The Functions of Lipids in the Body

STORING ENERGY The excess energy from the food we eat is digested and incorporated into adipose tissue, or fatty tissue. Most of the energy required by the human body is provided by carbohydrates and lipids. Glucose is stored in the body as glycogen. While glycogen provides a ready source of energy, lipids primarily function as an energy reserve. As you may recall, glycogen is quite bulky with heavy water content, thus the body cannot store too much for long. Alternatively, fats are packed together tightly without water and store far greater amounts of energy in a reduced space. A fat gram is densely concentrated with energy—it contains more than double the amount of energy than a gram of carbohydrate. Energy is needed to power the muscles for all the physical work and play an average person or child engages in. For instance, the stored energy in muscles propels an athlete down the track, spurs a dancer’s legs to showcase the latest fancy steps, and keeps all the moving parts of the body functioning smoothly. Unlike other body cells that can store fat in limited supplies, fat cells are specialized for fat storage and are able to expand almost indefinitely in size. An overabundance of adipose tissue can result in undue stress on the body and can be detrimental to your health. A serious impact of excess fat is the accumulation of too much cholesterol in the arterial wall, which can thicken the walls of arteries and lead to cardiovascular disease. Thus, while some body fat is critical to our survival and good health, in large quantities it can be a deterrent to maintaining good health.

REGULATING AND SIGNALING Triglycerides control the body’s internal climate, maintaining constant temperature. Those who don’t have enough fat in their bodies tend to feel cold sooner, are often fatigued, and have pressure sores on their skin from fatty acid deficiency. Triglycerides also help the body produce and regulate hormones. For example, adipose tissue secretes the hormone leptin, which regulates appetite. In the reproductive system, fatty acids are required for proper reproductive health. Women who lack proper amounts may stop menstruating and become infertile. Omega-3 and omega-6 essential fatty acids help regulate cholesterol and blood clotting and control inflammation in the joints, tissues, and bloodstream. Fats also play important functional roles in sustaining nerve impulse transmission, memory storage, and tissue structure. More specifically, in the brain, lipids are focal to brain activity in structure and in function. They help form nerve cell membranes, insulate neurons, and facilitate the signaling of electrical impulses throughout the brain.

INSULATING AND PROTECTING Did you know that up to 30 percent of body weight is comprised of fat tissue? Some of this is made up of visceral fat or adipose tissue surrounding delicate organs. Vital organs such as the heart, kidneys, and liver are protected by visceral fat. The composition of the brain is outstandingly 60 percent fat, demonstrating the major structural role that fat serves within the body. You may be most familiar with subcutaneous fat, or fat underneath the skin. This blanket layer of tissue insulates the body from extreme temperatures and helps keep the internal climate under control. It pads our hands and buttocks and prevents friction, as these areas frequently come in contact with hard surfaces. It also gives the body the extra padding required when engaging in physically demanding activities such as ice- or roller skating, horseback riding, or snowboarding.

AIDING DIGESTION AND INCREASING BIOAVAILABILITY The dietary fats in the foods we eat break down in our digestive systems and begin the transport of precious micronutrients. By carrying fat-soluble nutrients through the digestive process, intestinal absorption is improved. This improved absorption is also known as increased bioavailability. Fat-soluble nutrients are especially important for good health and exhibit a variety of functions. Vitamins A, D, E, and K—the fat-soluble vitamins—are mainly found in foods containing fat. Some fat-soluble vitamins (such as vitamin A) are also found in naturally fat-free foods such as green leafy vegetables, carrots, and broccoli. These vitamins are best absorbed when combined with foods containing fat. Fats also increase the bioavailability of compounds known as phytochemicals, which are plant constituents such as lycopene (found in tomatoes) and beta-carotene (found in carrots). Phytochemicals are believed to promote health and well-being. As a result, eating tomatoes with olive oil or salad dressing will facilitate lycopene absorption. Other essential nutrients, such as essential fatty acids, are constituents of the fats themselves and serve as building blocks of a cell.

Note that removing the lipid elements from food also takes away the food’s fat-soluble vitamin content. When products such as grain and dairy are processed, these essential nutrients are lost. Manufacturers replace these nutrients through a process called enrichment.

The Roles of Lipids in Food

HIGH ENERGY SOURCE Fat-rich foods naturally have a high caloric density. Foods that are high in fat contain more calories than foods high in protein or carbohydrates. As a result, high-fat foods are a convenient source of energy. For example, 1 gram of fat or oil provides 9 kilocalories of energy, compared with 4 kilocalories found in 1 gram of carbohydrate or protein. Depending on the level of physical activity and on nutritional needs, fat requirements vary greatly from person to person. When energy needs are high, the body welcomes the high-caloric density of fats. For instance, infants and growing children require proper amounts of fat to support normal growth and development. If an infant or child is given a low-fat diet for an extended period, growth and development will not progress normally. Other individuals with high-energy needs are athletes, people who have physically demanding jobs, and those recuperating from illness. When the body has used all of its calories from carbohydrates (this can occur after just twenty minutes of exercise), it initiates fat usage. A professional swimmer must consume large amounts of food energy to meet the demands of swimming long distances, so eating fat-rich foods makes sense. In contrast, if a person who leads a sedentary lifestyle eats the same high-density fat foods, they will intake more fat calories than their body requires within just a few bites. Use caution-consumption of calories over and beyond energy requirements is a contributing factor to obesity.

SMELL AND TASTE Fat contains dissolved compounds that contribute to mouth-watering aromas and flavors. Fat also adds texture to food. Baked foods are supple and moist. Frying foods locks in flavor and lessens cooking time. How long does it take you to recall the smell of your favorite food cooking? What would a meal be without that savory aroma to delight your senses and heighten your preparedness for eating a meal? Fat plays another valuable role in nutrition. Fat contributes to satiety, or the sensation of fullness. When fatty foods are swallowed the body responds by enabling the processes controlling digestion to retard the movement of food along the digestive tract, thus promoting an overall sense of fullness. Oftentimes before the feeling of fullness arrives, people overindulge in fat-rich foods, finding the delectable taste irresistible. Indeed, the very things that make fat-rich foods attractive also make them a hindrance to maintaining a healthful diet.

It is important to strike a proper balance between omega-3 and omega-6 fats in your diet. Research suggests that a diet that is too high in omega-6 fats distorts the balance of proinflammatory agents, promoting chronic inflammation and causing the potential for health problems such as asthma, arthritis, allergies, or diabetes. Omega-6 fats compete with omega-3 fats for enzymes and will actually replace omega-3 fats. The typical western diet is characterized by an excessive consumption of foods high in omega-6 fatty acids. To gain proper balance between the two, increase your omega-3 fat intake by eating more fatty fish or other sources of omega-3 fatty acids at least two times per week.

References

Allison CalabreseMarie Kainoa Fialkowski RevillaAlan TitchenalCheryl GibbyBilly MeinkeJennifer Draper. University of Hawaii Manoa, 2018.

 

Nguyen Thi Hoang Lan, Faculty of Food Science and Technology